

# **Engineering Tripos Part IIA, 3A6: Heat and Mass Transfer, 2017-18**

## **Module Leader**

[Prof S Hochgreb](#) [1]

## **Lecturers**

Prof S Hochgreb and Dr A Boies

## **Lab Leaders**

[Dr Liping Xu](#) [2]

## **Timing and Structure**

Lent term. Conduction and radiation (Dr A. Boies), convection and mass transfer (Dr J Sidey); 16 lectures.

## **Aims**

The aims of the course are to:

- Provide an understanding of the fundamentals of heat and mass transfer processes in engineering systems.
- Provide methods for analysis and solution of problems involving heat and mass transfer using fundamental differential analysis.
- Guide the process of scaling analysis and finding solutions by analogy.

## **Objectives**

As specific objectives, by the end of the course students should be able to:

- Understand the different modes of heat transfer, and their physics, and apply their knowledge to design and analysis of heat transfer problems
- Understand the principles of conduction, radiation and convection, and apply these principles to solve engineering problems
- Understand the analogy between heat, mass and momentum transfer
- Understand the origin and use of non-dimensional groups and their analogues in heat, mass and momentum transfer
- Understand the principles of phase change
- Understand the process of mass diffusion in gases, liquids, and solids
- Develop an intuition for scaling and magnitudes in heat transfer
- Develop an understanding of numerical and experimental methods for solving practical problems

## **Content**

### **Multidimensional conduction (3L)**

- Heat equation
- Multi-dimensional steady-state conduction in solids

- Transient conduction: Biot and Fourier numbers, lumped capacitance
- Numerical methods

### Radiation heat transfer (3L)

- Spectral radiation
- Spectral absorptivity, emissivity, transmissivity
- Form factor calculations and approximations
- Numerical methods

### Convective Heat Transfer (7L)

- Principles of convection
- Forced convection
- Free convection
- Heat exchangers
- Numerical methods and examples

### Mass transfer (3L)

- Conservation laws and constitutive relations
- Diffusive and convective fluxes
- Mass and heat transfer analogies

## Coursework

Laboratory experiment : short or full report

### Impinging flow experiment

#### Learning objectives:

- Measure temperatures across a metal plate
- Determine the power delivered to a test plate
- Determine the local Nusselt number for flow over an impinging plate
- Correlate the Nusselt number to the relevant flow parameters, and compare to theory

#### Practical information:

- Sessions will take place in Hopkinson Laborator, during week(s) [TBA].
- This activity does not involve preliminary work.

#### Full Technical Report:

Students will have the option to submit a Full Technical Report.

## Booklists

Please see the [Booklist for Part IIA Courses](#) [3] for references for this module.

## Examination Guidelines

Please refer to [Form & conduct of the examinations](#) [4].

Last modified: 28/10/2017 19:21

**Source URL (modified on 28-10-17):** <https://teaching24-25.eng.cam.ac.uk/content/engineering-tripos-part-iiia-3a6-heat-and-mass-transfer-2017-18>

**Links**

- [1] <mailto:sh372@eng.cam.ac.uk>
- [2] <mailto:lpx1@cam.ac.uk>
- [3] <https://www.vle.cam.ac.uk/mod/book/view.php?id=364091&chapterid=46251>
- [4] <https://teaching24-25.eng.cam.ac.uk/content/form-conduct-examinations>